Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Analysis Biomolecular Interactions of PTH-Fc and PTH1R by BLI (CAT#: STEM-MB-0152-CJ)

Introduction

Microgravity-induced bone loss is a main obstacle for long term space missions as it is difficult to maintain bone mass when loading stimuli is reduced. With a typical bone mineral density loss of 1.5% per month of microgravity exposure, the chances for osteoporosis and fractures may endanger astronauts’ health. Parathyroid Hormone or PTH (1-34) is an treatment for osteoporosis, and may reverse microgravity-induced bone loss. However, PTH proteins requires refrigeration, daily subcutaneous injection, and have a short shelf-life, limiting its use in a resource-limited environment, like space. Plant-based expression is well-suited for space medicine application given its low resource consumption and short expression timeline. The PTH-Fc accumulation profile in plant was established with a peak expression on day 5 post infiltration of 373 ± 59 mg/kg leaf fresh weight.




Principle

Bio-Layer Interferometry (BLI) is an optical technique for measuring macromolecular interactions by analyzing interference patterns of white light reflected from the surface of a biosensor tip. BLI experiments are used to determine the kinetics and affinity of molecular interactions. In a BLI experiment, one molecule is immobilized to a Dip and Read Biosensor and binding to a second molecule is measured. A change in the number of molecules bound to the end of the biosensor tip causes a shift in the interference pattern that is measured in real-time.

Applications

Bones; Pharmacology

Procedure

1. Detect Buffers and prepare samples. BLI experiments are set up with one molecule immobilised on the surface of the biosensor (load sample) and a second molecule in solution (the analytical sample).
2. Fix the load sample on the biocompatible biosensor while the analytical sample is in solution.
3. The biosensor tip is immersed in the solution so that the target molecule begins to bind to the analysis sample.
4. Set up and run the BLI experiment. Molecules bound to or dissociated from the biosensor can generate response curves on the BLI system; unbound molecules, changes in the refractive index of the surrounding medium or changes in flow rate do not affect the interferogram pattern.
5. Collect and analyse data on the BLI's system.

Materials

• Equipment: Fortebio Bio-Layer Interferometry (BLI)
• Sample Type: DNA, RNA, Protein, Antibodies, Peptides, Small Molecules
Advertisement