Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Analysis of TMPRSS2 Gene Rearrangement by Southern Blot Technology (CAT#: STEM-MHT-0072-LGZ)

Introduction

Official Full Name: transmembrane serine protease 2<br />Also known as: PRSS10<br />This gene encodes a protein that belongs to the serine protease family. The encoded protein contains a type II transmembrane domain, a receptor class A domain, a scavenger receptor cysteine-rich domain and a protease domain. Serine proteases are known to be involved in many physiological and pathological processes. This gene was demonstrated to be up-regulated by androgenic hormones in prostate cancer cells and down-regulated in androgen-independent prostate cancer tissue. The protease domain of this protein is thought to be cleaved and secreted into cell media after autocleavage. This protein also facilitates entry of viruses into host cells by proteolytically cleaving and activating viral envelope glycoproteins. Viruses found to use this protein for cell entry include Influenza virus and the human coronaviruses HCoV-229E, MERS-CoV, SARS-CoV and SARS-CoV-2 (COVID-19 virus). Alternatively spliced transcript variants encoding different isoforms have been found for this gene.




Principle

Under certain conditions, two single strands of nucleic acid with certain homology can be specifically hybridized to form double strands according to the principle of base complementarity. Generally, DNA molecules to be detected are digested with restriction enzymes, separated by agar-gel electrophoresis, denatured and transferred to nitrocellulocellulose film or nylon film or other solid phase support according to their position in the gel, fixed and then reacted with DNA probes labeled with isotopes or other markers. This is followed by autoradiography or an enzyme reaction to detect the amount of specific DNA molecules. If the object to be tested contains a sequence that is complementary to the probe, the two are combined by the principle of base complementarity, and the free probe is washed and detected by self-development or other suitable techniques, thus revealing the fragment to be tested and its relative size.

Applications

Gene Rearrangement Detection

Procedure

1. Sample Processing
2. DNA Extraction and Digestion
3. Gel Electrophoresis
4. Gel Pretreatment
5. Transfer membrane
6. Probe Labeling
7. Prehybridization (blocking)
8. Southern hybridization
9. Membrane washing
10. Autoradiographic Assay
11. Results Analysis

Materials

Sample: DNA, Bacterial Fluid/Tissue/Cell