Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Characterization of Ion-Chelating Nanocarriers (Chitosan) by Differential scanning calorimetry (DSC) (CAT#: STEM-MB-0502-WXH)

Introduction

Chitosan is one polysaccharide-based nanocarrier, whose major application is based on its ability to entrap strongly heavy and toxic metal ions (such as Cu, Co, Ni, Cd, Zn, Pb, Mn, Cr, Pd, Pt, Au, Ag, Hg, U, Ga, and In). Hence, one of the excellent applications of these nanoparticles is for removing metallic impurities in wastewaters. In addition, chitosan, as a natural polymer, has potential applications in biomedical products, cosmetics, and food processing. DSC is an effective device for characterization of chitosan and its metal chelates.




Principle

Calorimetry is a primary technique for measuring the thermal properties of materials to establish a connection between temperature and specific physical properties of substances and is the only method for direct determination of the enthalpy associated with the process of interest. Calorimeters are used frequently in chemistry, biochemistry, cell biology, biotechnology, pharmacology, and recently, in nanoscience to measure thermodynamic properties of the biomolecules and nano-sized materials.
Amongst various types of calorimeters, differential scanning calorimeter (DSC) is a popular one. DSC is a thermal analysis apparatus measuring how physical properties of a sample change, along with temperature against time.1In other words, the device is a thermal analysis instrument that determines the temperature and heat flow associated with material transitions as a function of time and temperature. During a change in temperature, DSC measures a heat quantity, which is radiated or absorbed excessively by the sample on the basis of a temperature difference between the sample and the reference material.

Applications

Characterization of Ion-Chelating Nanocarriers

Procedure

1. Instrument Start-up
2. Sample Preparation
(1) Dialyze the sample against the buffer that will be used as the reference for the experiment.
(2) Determine the concentration of the protein sample using the most suitable protein concentration determination method.
(3) Degas the sample and reference buffer in vacuum to get rid of microbubbles that can cause volume inaccuracy.
(4) load the samples and their respective buffer in pairs into 96 well plates compatible with the instrument.
(5) Place the plate in the sample holding compartment in the proper orientation.
3. Experimental Parameter Setup
Set the starting temperature, final temperature and the scan rate of the experiment.
4. Data Analysis

Materials

Differential Scanning Calorimeters
Advertisement