Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Fluorescent Protein Dronpa by Fluorescence correlation spectroscopy (FCS) (CAT#: STEM-MB-1172-WXH)

Introduction

Dronpa is a reversibly switchable photoactivatable fluorescent protein that is 2.5 times as bright as EGFP. Dronpa gets switched off by strong illumination with 488 nm (blue) light and this can be reversed by weak 405 nm UV light. A single dronpa molecule can be switched on and off over 100 times. It has an excitation peak at 503 nm and an emission peak at 518 nm.
Dronpa's fast dynamics and stability under repeated cycles of switching make it one of the more important switchable fluorescent proteins. It is used in super resolution microscopy techniques like PALM/STORM. It can also be used to track fast dynamics of proteins in cells.




Principle

Fluorescence correlation spectroscopy (FCS) is a statistical analysis, via time correlation, of stationary fluctuations of the fluorescence intensity. Its theoretical underpinning originated from L. Onsager's regression hypothesis. The analysis provides kinetic parameters of the physical processes underlying the fluctuations. One of the interesting applications of this is an analysis of the concentration fluctuations of fluorescent particles (molecules) in solution. In this application, the fluorescence emitted from a very tiny space in solution containing a small number of fluorescent particles (molecules) is observed. The fluorescence intensity is fluctuating due to Brownian motion of the particles. In other words, the number of the particles in the sub-space defined by the optical system is randomly changing around the average number. The analysis gives the average number of fluorescent particles and average diffusion time, when the particle is passing through the space. Eventually, both the concentration and size of the particle (molecule) are determined. Both parameters are important in biochemical research, biophysics, and chemistry.

Applications

• Measurement of the diffusion coefficient of biomolecules
• Detection of translational diffusions
• Measurement of the biomolecular concentration in vitro or in vivo
• Quantification of the viscosity of a solution
• Monitoring the binding or unbinding of two kinds of biomolecules
• Probing the diffusion paths of different directions and mapping the intercellular obstacles

Procedure

1. Sample Preparation
2. Fluorescence correlation spectroscopy (FCS) testing
3. Data analysis

Materials

Fluorescence Correlation Spectrometer
Advertisement