Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Imaging Intermediate Filaments and Microtubules with 2-dimensional Direct Stochastic Optical Reconstruction Microscopy (CAT#: STEM-MIT-0388-LJX)

Introduction

The cytoskeleton, composed of actin microfilaments, microtubules, and intermediate filaments (IF), plays a key role in the control of cell shape, polarity, and motility. The organization of the actin and microtubule networks has been extensively studied but that of IFs is not yet fully characterized. IFs have an average diameter of 10 nm and form a network extending throughout the cell cytoplasm. They are physically associated with actin and microtubules through molecular motors and cytoskeletal linkers. This tight association is at the heart of the regulatory mechanisms that ensure the coordinated regulation of the three cytoskeletal networks required for most cell functions. It is therefore crucial to visualize IFs alone and also together with each of the other cytoskeletal networks. However, IF networks are extremely dense in most cell types, especially in glial cells, which makes its resolution very difficult to achieve with standard fluorescence microscopy (lateral resolution of ~250 nm). Direct STochastic Optical Reconstruction Microscopy (dSTORM) is a technique allowing a gain in lateral resolution of one order of magnitude.




Principle

Principles of stochastic optical reconstruction microscopy: By fitting the two-dimensional Gaussian function to determine the centroid of microscope-formed light spots, a single fluorescent source (such as a fluorescent group) can be located with high precision. The accuracy of the calculation to determine the centroid depends only on the number of photons collected, and the resolution scale can be tens of nanometers or smaller. To achieve this accuracy, the density of the fluorescent molecules being tested is required to be low enough that the spots of the two fluorescent groups are unlikely to overlap.

Applications

Imaging in two or three dimensions, in multiple colors, and even in living cells
Applied in many areas of the life sciences, and provides very high resolution images for many different needs from neuroscience to subcellular science

Procedure

1. Sampling
2. Preparation of slices
3. Staining (Select according to the specific experimental situation)
4. Observation

Materials

• Sample Type:
Filaments and microtubules

Notes

Operate in strict accordance with the operating procedures, and shall not arbitrarily change the operating procedures
Advertisement