Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Study of nucleic acid secondary structure by Circular dichroism (CD) (CAT#: STEM-MB-0604-WXH)

Introduction

Nucleic acid secondary structure is the basepairing interactions within a single nucleic acid polymer or between two polymers. It can be represented as a list of bases which are paired in a nucleic acid molecule. The secondary structures of biological DNAs and RNAs tend to be different: biological DNA mostly exists as fully base paired double helices, while biological RNA is single stranded and often forms complex and intricate base-pairing interactions due to its increased ability to form hydrogen bonds stemming from the extra hydroxyl group in the ribose sugar.
In a non-biological context, secondary structure is a vital consideration in the nucleic acid design of nucleic acid structures for DNA nanotechnology and DNA computing, since the pattern of basepairing ultimately determines the overall structure of the molecules.




Principle

Circular dichroism (CD) is a spectroscopy technique that measures the absorption difference between left and right circularly polarized light. By symmetry, this asymmetric absorption can only occur for asymmetric molecules, meaning chiral molecules.

Applications

Circular dichroism (CD) spectroscopy is a powerful technique that is sensitive to the chirality (handedness) of molecules. It can be used to study absolute stereochemistry, enantiomeric composition, racemization, enantiomeric differentiation, and molecular interactions and conformation.

Procedure

1. Sample preparation
2. Measurement by CD instrument
3. Data analysis

Materials

Circular dichroism (CD) spectrophotometer
Advertisement