Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Study of saturated fatty acids by Raman Spectroscopy (CAT#: STEM-ST-0081-WXH)

Introduction

A saturated fat is a type of fat in which the fatty acid chains have all single bonds. A fat known as a glyceride is made of two kinds of smaller molecules: a short glycerol backbone and fatty acids that each contain a long linear or branched chain of carbon (C) atoms. Along the chain, some carbon atoms are linked by single bonds (-C-C-) and others are linked by double bonds (-C=C-). A double bond along the carbon chain can react with a pair of hydrogen atoms to change into a single -C-C- bond, with each H atom now bonded to one of the two C atoms. Glyceride fats without any carbon chain double bonds are called saturated because they are "saturated with" hydrogen atoms, having no double bonds available to react with more hydrogen.




Principle

Raman Spectroscopy is a non-destructive chemical analysis technique which provides detailed information about chemical structure, phase and polymorphy, crystallinity and molecular interactions.
The principle behind Raman spectroscopy is that the monochromatic radiation is passed through the sample such that the radiation may get reflected, absorbed, or scattered. The scattered photons have a different frequency from the incident photon as the vibration and rotational property vary.

Applications

• Analysis of biocompatibility of a material.
• Analysis of nucleic acids.
• Study of interactions between drugs and cells.
• Photodynamic therapy (PDT).
• Analyzing metabolic accumulations of a substance or compounds.
• Diagnosis of disease.
• Analysis of individual cells.
• Cell sorting applications.
• Analyzing the features of biomolecules.
• Study of bone structure.

Procedure

1. Preparation of samples
2. Determine instrument parameters
3. Perform background scan
4. Test the sample
5. Data analysis

Materials

• Raman Spectrometer
• Raman Imaging Microscope
Advertisement