Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Study of Structural Rearrangement of beta-Lactoglobulin at Different Oil-Water Interfaces by Dual polarization interferometry (DPI) (CAT#: STEM-MB-0469-WXH)

Introduction

Understanding the factors that control protein structure and stability at the oil water interface continues to be a major focus to optimize the formulation of protein-stabilized emulsions. β-Lactoglobulin (BLG) is the major whey protein of cow and sheep's milk (~3 g/L), and is also present in many other mammalian species; a notable exception being humans. Its structure, properties and biological role have been reviewed many times. BLG is considered to be a milk allergen. β-lactoglobulin is a lipocalin protein, and can bind many hydrophobic molecules, suggesting a role in their transport. β-lactoglobulin has also been shown to be able to bind iron via siderophores and thus might have a role in combating pathogens. Upon ingestion BLG is able to shuttle complexed iron into human immune cells, thereby providing micronutrition to these cells and participating in immune tolerance.




Principle

Dual polarization interferometry (DPI) is an analytical technique that allows the simultaneous determination of thickness, density, and mass of a biological layer on a sensing waveguide surface in real time. DPI focuses laser light into two waveguides. One of these functions as the "sensing" waveguide having an exposed surface while the second one functions to maintain a reference beam. A two-dimensional interference pattern is formed in the far field by combining the light passing through the two waveguides. The DPI technique rotates the polarization of the laser, to alternately excite two polarization modes of the waveguides. Measurement of the interferogram for both polarizations allows both the refractive index and the thickness of the adsorbed layer to be calculated. These measurements can be used to infer conformational information about the molecular interactions taking place, as the molecule size (from the layer thickness) and the fold density (from the RI) change.

Applications

Study of Structural Rearrangement of beta-Lactoglobulin at Different Oil-Water Interfaces.
Optimization of the formulation of protein-stabilized emulsions.

Procedure

1. Setting of dual polarization interferometry
2. Preparing the DPI sensor chip
3. Immobilization of target on DPI biosensor
4. Reagent was injected to react
5. Quantitative analysis

Materials

• DPI biosensor
• DPI sensor chip
Advertisement