Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Study of the regulation of histone mRNA levels during the cell cycle by Fluorescence in situ hybridisation (FISH) (CAT#: STEM-MB-1224-WXH)

Introduction

Histone mRNA metabolism is tightly coupled to cell cycle progression and to rates of DNA synthesis. Each histone subtype has several copies of the same gene to allow for the large demand placed during DNA replication. Histones can be classified as replication dependent or replication independent, which is decided by their expression pattern during the cell cycle. The replication independent histone genes are transcribed at a relatively constant low rate, regardless of cell cycle stage. However, most of the vertebrate histone genes are replication dependent and are therefore more highly expressed during the cell cycle’s S phase.




Principle

FISH uses fluorescent probes with complementary base sequences to locate the presence or absence of specific portions of DNA on chromosomes. The probe and target DNA must be denatured with heat or chemicals to break hydrogen bonds in the DNA and to allow hybridisation to occur once the two samples are mixed. The fluorescent probes form new hydrogen bonds with their complementary base pairs on the DNA, and these can then be detected via microscopy.

Applications

Detect and localize the presence or absence of specific DNA sequences on chromosomes.
Detect and localize specific RNA targets (mRNA, lncRNA and miRNA) in cells, circulating tumor cells, and tissue samples.

Procedure

1. Sample preparation
2. Co-denaturation and hybridization
3. Probe detection
4. Wash off of unbound probe
5. Analysis by flow cytometer/fluorescence microscopy

Materials

• Flow cytometer
• Fluorescence microscopy
Advertisement