Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Super-Resolution Imaging of Plasmodesmata by 3D Structured Illumination Microscopy (CAT#: STEM-MIT-0402-LJX)

Introduction

Plasmodesmata is a thin channel that penetrates the outer wall of epidermal cells. It extends from the cell cavity to the surface of the cell wall, and is the channel of communication between the inner and outer cells.
Plasmodesmata (PD) have a diameter of around 30-50 nm which is well below the 200 nm limit of optical resolution, making analysis by light microscopy difficult and resolving internal structures of the PD such as the desmotubule impossible. Modern super-resolution methods such as 3D structured illumination microscopy (3D-SIM) can increase the lateral and axial resolution and work well on fixed, sectioned material.




Principle

The structured illumination microscopy (SIM) applies a pattern lighting field (different from the traditional wide-field lighting) to the samples to improve the spatial resolution of the optical microscope and has advantages for the observation of living cells. In this method, the spatial frequency of the illumination pattern is mixed with the spatial frequency of the sample feature, converting the high frequency feature into a lower frequency detectable by the microscope. The periodic lighting pattern (Moire fringes, Moire fringes) is generated by the interference of multiple light sources in the axial (Z), lateral (X-Y) or both directions, and the high-resolution image is reconstructed based on the acquisition of multiple illumination images in different phases and directions. Since the illumination mode itself is also limited by optical diffraction, SIM can only double the spatial resolution by combining two information sources with limited diffraction, achieving resolutions of 100 nm and 300 nm in the X-Y and Z-axis directions, respectively.

Applications

Applied to the research of cell physiology, cell dynamics and other subcellular level

Procedure

1. Sampling
2. Preparation of slices
3. Staining (Select according to the specific experimental situation)
4. Observation

Materials

• Sample Type:
Plasmodesmata

Notes

Operate in strict accordance with the operating procedures, and shall not arbitrarily change the operating procedures
Advertisement