Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Structural Analysis of RNA by NMR spectroscopy (CAT#: STEM-MB-0657-WXH)

Introduction

RNA typically is a single-stranded biopolymer. However, the presence of self-complementary sequences in the RNA strand leads to intrachain base-pairing and folding of the ribonucleotide chain into complex structural forms consisting of bulges and helices. The three-dimensional structure of RNA is critical to its stability and function, allowing the ribose sugar and the nitrogenous bases to be modified in numerous different ways by cellular enzymes that attach chemical groups (e.g., methyl groups) to the chain. Such modifications enable the formation of chemical bonds between distant regions in the RNA strand, leading to complex contortions in the RNA chain, which further stabilizes the RNA structure. Molecules with weak structural modifications and stabilization may be readily destroyed.




Principle

Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds. Biochemists use NMR to identify proteins and other complex molecules. Besides identification, NMR spectroscopy provides detailed information about the structure, dynamics, reaction state, and chemical environment of molecules.

Applications

Nuclear Magnetic Resonance (NMR) spectroscopy is an analytical chemistry technique used in quality control and research for determining the content and purity of a sample as well as its molecular structure.

Procedure

1. Place the sample in a static magnetic field.
2. Excite nuclei in the sample with a radio frequency pulse.
13. Measure the frequency of the signals emitted by the sample.

Materials

NMR spectrometer
Advertisement