Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Study of the interaction between DNA and saffron carotenoids by Circular dichroism (CD) (CAT#: STEM-MB-0612-WXH)

Introduction

Saffron, a spice derived from the flower of Crocus sativus, is rich in carotenoids. Preclinical studies have shown that dietary intake of some carotenoids have potent anti-tumor effects both in vitro and in vivo, suggesting their potential preventive and/or therapeutic roles in several tissues. The reports represent that the use of carotenoids without the potential for conversion to vitamin A may provide further protection and avoid toxicity. The mechanisms underlying cancer chemo-preventive activities of carotenoids include modulation of carcinogen metabolism, regulation of cell growth and cell cycle progression, inhibition of cell proliferation, anti-oxidant activity, immune modulation, enhancement of cell differentiation, stimulation of cell-to-cell gap junction communication, apoptosis and retinoid-dependent signaling.




Principle

Circular dichroism (CD) is a spectroscopy technique that measures the absorption difference between left and right circularly polarized light. By symmetry, this asymmetric absorption can only occur for asymmetric molecules, meaning chiral molecules.

Applications

Circular dichroism (CD) spectroscopy is a powerful technique that is sensitive to the chirality (handedness) of molecules. It can be used to study absolute stereochemistry, enantiomeric composition, racemization, enantiomeric differentiation, and molecular interactions and conformation.

Procedure

1. Sample preparation
2. Measurement by CD instrument
3. Data analysis

Materials

Circular dichroism (CD) spectrophotometer
Advertisement