Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Measurement of the elastic modulus of single bacterial cellulose fibers by atomic force microscopy (CAT#: STEM-SMMT-0021-LJX)

Introduction

Bacterial cellulose is a kind of cellulose synthesized by Acetobacter, Agrobacterium, Rhizobium, Sarcina and other microorganisms under different conditions.
The ability of the atomic force microscope to measure forces with subnanonewton sensitivity at nanometer-scale lateral resolutions has led to its use in the mechanical characterization of nanomaterials. Recent studies have shown that the atomic force microscope can be used to measure the elastic moduli of suspended fibers by performing a nanoscale three-point bending test, in which the center of the fiber is deflected by a known force.




Principle

Atomic force microscope (AFM) is a new type of surface analysis instrument based on the principles of physics and imaging through the interaction of scanning probe and sample surface atoms. It belongs to the third generation of microscopes after optical microscopes and electron microscopes.
AFM usually uses a sharp probe to scan the sample, which is fixed on a microcantilever that is extremely sensitive to the surface force between the probe and the sample. The deflection of the cantilever under force can cause the laser beam emitted by the laser source to shift after being reflected by the cantilever. The detector receives reflected light, and finally receives signals that are collected, processed, and formed into surface morphology images of the sample through a computer system.

Applications

Imaging of micro and nanoscale features on the surface of the sample
Suitable for research in fields such as materials science, biology, and chemistry

Procedure

1. Sampling
2. Preparation of slices
3. Staining (Select according to the specific experimental situation)
4. Observation

Materials

• Sample Type:
Bacterial cells

Notes

Operate in strict accordance with the operating procedures, and shall not arbitrarily change the operating procedures
Advertisement