Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Molecular mass analysis of Xanthan solutions by Static light scattering (SLS) (CAT#: STEM-MB-0565-WXH)

Introduction

Xanthan gum is a polysaccharide with many industrial uses, including as a common food additive. It is an effective thickening agent, emulsifier, and stabilizer that prevents ingredients from separating. It can be produced from simple sugars using a fermentation process and derives its name from the species of bacteria used, Xanthomonas campestris.




Principle

Static light scattering is a technique in physical chemistry that measures the intensity of the scattered light to obtain the average molecular weight Mw of a macromolecule like a polymer or a protein in solution. Measurement of the scattering intensity at many angles allows calculation of the root mean square radius, also called the radius of gyration Rg. By measuring the scattering intensity for many samples of various concentrations, the second virial coefficient, A2, can be calculated.

Applications

The main applications of static light scattering is molecular mass determination of macromolecules, such as proteins and polymers, as it is possible to measure the molecular mass of proteins without any assumption about their shape.

Procedure

1. Sample preparation
2. Measurement by SLS instrument
3. Data analysis

Materials

• Right-Angle Light Scattering (RALS) Detector
• Low-Angle Light Scattering (LALS) Detector
• Hybrid RALS/LALS Detector
• Multi-Angle Light Scattering (MALS) Detector
Advertisement