Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Study of Heme proteins by Raman Spectroscopy (CAT#: STEM-ST-0021-WXH)

Introduction

Heme proteins are one of the most studied classes of biomolecules mainly because of their diverse range of structures and their biological functions in many life processes.[119] Due to heme proteins’ significant role and myriad ways of classification, for the purpose of global analysis, the data of heme protein structurefunction relationship has been compiled in a web-based resource (Heme Protein Database).




Principle

Raman Spectroscopy is a non-destructive chemical analysis technique which provides detailed information about chemical structure, phase and polymorphy, crystallinity and molecular interactions.
The principle behind Raman spectroscopy is that the monochromatic radiation is passed through the sample such that the radiation may get reflected, absorbed, or scattered. The scattered photons have a different frequency from the incident photon as the vibration and rotational property vary.

Applications

• Analysis of biocompatibility of a material.
• Analysis of nucleic acids.
• Study of interactions between drugs and cells.
• Photodynamic therapy (PDT).
• Analyzing metabolic accumulations of a substance or compounds.
• Diagnosis of disease.
• Analysis of individual cells.
• Cell sorting applications.
• Analyzing the features of biomolecules.
• Study of bone structure.

Procedure

1. Preparation of samples
2. Determine instrument parameters
3. Perform background scan
4. Test the sample
5. Data analysis

Materials

• Raman Spectrometer
• Raman Imaging Microscope
Advertisement