Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

ALK-Testing in non-small cell lung cancer (NSCLC) by Fluorescence in situ hybridisation (FISH) (CAT#: STEM-MB-1214-WXH)

Introduction

The EML4-ALK pathway plays an important role in a significant subset of non-small cell lung cancer patients. Treatment options such as ALK tyrosine kinase inhibitors lead to improved progression free survival and overall survival. These therapeutic options are chosen on the basis of the identification of the underlying genetic signature of the EML-ALK translocation. Efficient and easily accessible testing tools are required to identify eligible patients in a timely fashion. FISH techniques are commonly used to detect this translocation




Principle

FISH uses fluorescent probes with complementary base sequences to locate the presence or absence of specific portions of DNA on chromosomes. The probe and target DNA must be denatured with heat or chemicals to break hydrogen bonds in the DNA and to allow hybridisation to occur once the two samples are mixed. The fluorescent probes form new hydrogen bonds with their complementary base pairs on the DNA, and these can then be detected via microscopy.

Applications

Detect and localize the presence or absence of specific DNA sequences on chromosomes.
Detect and localize specific RNA targets (mRNA, lncRNA and miRNA) in cells, circulating tumor cells, and tissue samples.

Procedure

1. Sample preparation
2. Co-denaturation and hybridization
3. Probe detection
4. Wash off of unbound probe
5. Analysis by flow cytometer/fluorescence microscopy

Materials

• Flow cytometer
• Fluorescence microscopy
Advertisement