Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Analysis of Carbohydrate Polymers by Liquid Chromatography-Charged Aerosol Detection (LC-CAD) (CAT#: STEM-CT-2226-CJ)

Introduction

The polymers of carbohydrates are disaccharides and polysaccharides that consist of two or more monomers respectively. Examples of monosaccharide are: glucose, fructose and galactose. Examples of disaccharides are: sucrose, lactose and maltose. Carbohydrates have become increasingly important commercially not only as food or structural building blocks, but also as natural health products. It is essential to have proper QC of carbohydrate-based therapeutics to ensure their efficacy and safety.




Principle

The Charged Aerosol Detector (CAD) is a detector used in conjunction with high-performance liquid chromatography (HPLC) and ultra high-performance liquid chromatography (UHPLC) to measure the amount of chemicals in a sample by creating charged aerosol particles which are detected using an electrometer.

Applications

Biochemistry; Environtology; Industry

Procedure

1. Nebulization: Charged Aerosol Detection begins by nebulizing the column eluent into droplets and subsequently drying the droplets into particles. The particle size increases with the amount of analyte.
2. Charging: A stream of positively-charged gas collides with the analyte particles. The charge is then transferred to the particles—the larger the particles, the greater the charge.
3. Detection: The charged particles transfer to a collector, where an extremely sensitive electrometer measures the aggregate charge. This process generates a signal directly proportional to the mass of the analyte present.

Materials

• Sample: Antibiotics; Excipients; Ions; Lipids; Natural Products; Biofuels; Sugars; Surfactants; Serum; Urine
• Equipment: Charged Aerosol Detectors; HPLC Instrument
• (Optional): Chromatographic column; Ultra-pure water

Notes

1. In comparison to other universal detectors such as refractive index (RI) and evaporative light scattering detectors (ELSD), CAD offers superior sensitivity and linearity. Depending on the chromatographic conditions, typically low ng limits of detection can be achieved.
2. As CAD measures the charge transferred to the particles it offers near-universal detection any non-volatile and most semi-volatile analytes, allowing you to see the full range of analytes in your sample.
3. The most desired feature of a near-universal detector like CAD is the ability to both quantitatively measure compounds incompatible with UV-Vis and MS detection and relative amounts of compounds when certified standards are not available for a single calibrant quantification.