Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Analysis of Lipoxygenase by Electron paramagnetic resonance (EPR) spectroscopy (CAT#: STEM-MB-1082-WXH)

Introduction

Lipoxygenases (EC 1.13.11.-) are a family of (non-heme) iron-containing enzymes most of which catalyze the dioxygenation of polyunsaturated fatty acids in lipids containing a cis,cis-1,4- pentadiene into cell signaling agents that serve diverse roles as autocrine signals that regulate the function of their parent cells, paracrine signals that regulate the function of nearby cells, and endocrine signals that regulate the function of distant cells.
Lipoxygenases are found in eukaryotes (plants, fungi, animals, protists); while the third domain of terrestrial life, the archaea, possesses proteins with a slight (~20%) amino acid sequence similarity to lipoxygenases, these proteins lack iron-binding residues and therefore are not projected to possess lipoxygenase activity.




Principle

Electron Paramagnetic Resonance (EPR), also called Electron Spin Resonance (ESR), is a branch of magnetic resonance spectroscopy which utilizes microwave radiation to probe species with unpaired electrons, such as radicals, radical cations, and triplets in the presence of an externally applied static magnetic field.
EPR spectroscopy is particularly suitable for the investigation of (bio)chemical systems with strongly localized spin density and their interaction with the environment. For these systems EPR provides information on the structure and dynamics and is widely used in chemistry, physics and biology.

Applications

• Study dynamic organisation of lipids in biological membranes, lipid-protein interactions and temperature of transition of gel to liquid crystalline phases.
• Determine oxygen levels in tissues and blood.
• Injection of spin-labeled molecules allows for electron resonance imaging of living organisms.
• EPR can be used to measure microviscosity and micropolarity within drug delivery systems as well as the characterization of colloidal drug carriers.
• The study of radiation-induced free radicals in biological substances (for cancer research).
• Investigation on the antioxidant properties of medicine

Procedure

1. Sample Preparation
2. Electron paramagnetic resonance (EPR) spectroscopy testing
46. Data analysis

Materials

• EPR Spectrometer
• Spectrophotometer
Advertisement