Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Microplastics characterization by isotope ratio mass spectrometry (CAT#: STEM-ST-0062-LJX)

Introduction

Micro- and nano-scale plastic particles in the environment result from their direct release and degradation of larger plastic debris. Relative to macro-sized plastics, these small particles are of special concern due to their potential impact on marine, freshwater, and terrestrial systems. While microplastic (MP) pollution has been widely studied in geographic regions globally, many questions remain about its origins. It is assumed that urban environments are the main contributors but systematic studies are lacking. The absence of standard methods to characterize and quantify MPs and smaller particles in environmental and biological matrices has hindered progress in understanding their geographic origins and sources, distribution, and impact. Hence, the development and standardization of methods is needed to establish the potential environmental and human health risks. In this service, we used stable carbon isotope ratio mass spectrometry (IRMS) as complementary techniques for characterization of common plastics.




Principle

Isotope ratio mass spectrometry (IRMS) leverages magnetic sector mass spectrometry to enable high-precision measurement of the stable isotope content of a sample. Typical measurements target hydrogen, carbon, nitrogen, and oxygen analyses—although elements with masses up to and including sulfur can be measured. Solid, liquid, or gas phase samples are converted to simple gases then introduced to the IRMS. During analysis, an electron impact source ionizes sample-derived gas which is then accelerated down a flight tube, separated by mass, and quantified using a series of Faraday cups. The high precision of IRMS enables enumeration of even very small isotopic fractionation associated with physical, chemical, and biological transformations or natural abundance measurements.

Applications

For explaining the detailed molecular mechanisms behind biological processes
For understanding and quantifying nutrient and material exchanges between ecosystems
For providing ultra-precise stable isotope analyses
For understanding the geological history of the Earth
For food authenticity, forensic science, medical research and anti-doping testing

Procedure

1. Fill the reaction tube and install it, connect the gas path
2. Check for helium leaks
3. Heat up the reactor, wait for the reaction tube to burn stable, adjust the state of the equipment
4. Wrap the sample in a tin cup and test the sample
5. Store and process data

Materials

• Sample Type:
Microplastic

Notes

1.The approach is also valuable for quantifying the reactivity and progression of an applied stable isotope tracer to help determine reaction rates and final disposition of applied substrates.
2.IRMS offers a way of measuring isotopic variations with extremely high levels of accuracy. It can be used to detect isotope values of lighter elements with no issues, making it instrumental in the analysis of organic and natural samples.
Advertisement