Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Quantitative analysis of noradrenergic innervation of vasopressin- and oxytocin-containing neurons in the hypothalamic paraventricular nucleus of the macaque monkey by double-label immunohistochemistry and confocal laser microscopy technology (CAT#: STEM-MIT-0162-LJX)

Introduction

Previous reports on the rat and monkey hypothalamus have revealed a dense noradrenergic innervation within the hypothalamic paraventricular nucleus as assessed by dopamine-beta-hydroxylase immunohistochemistry. These single-label analyses were unable to delineate the cellular structures which receive this catecholaminergic innervation. Double-label preparations in the rat hypothalamic paraventricular nucleus have demonstrated synaptic interactions between noradrenergic varicosities and magnocellular neurons. However, the density and distribution of varicosities contacting chemically identified magnocellular neurons have not been assessed at the light or electron microscopic level. In this service, single-label immunohistochemistry was used to assess the morphology and distribution of vasopressin- and oxytocin-immunoreactive neurons within the macaque hypothalamic paraventricular nucleus. In addition, double-label immunohistochemistry was combined with confocal laser scanning microscopy to quantify the number of dopamine-beta-hydroxylase-immunoreactive varicosities in apposition to magnocellular neurons expressing vasopressin or oxytocin immunoreactivity.




Principle

Laser scanning confocal microscope is a high-tech microscope. It is based on fluorescence microscope imaging and equipped with a laser scanning device, which uses ultraviolet or visible light to excite the fluorescence probe, thereby obtaining fluorescence images of the internal microstructure of cells or tissues.
The laser beam is used as the light source in the laser scanning confocal microscope. The laser beam passes through the illuminating pinhole and is reflected to the objective lens through the spectroscope. The laser beam is focused on the sample, and every point on the focal plane of the specimen is scanned. If there is a fluorescent substance that can be excited in the tissue sample, the fluorescence emitted after excitation is directly reversed back to the spectroscope through the original incident light path, and is first focused when passing through the detection pinhole. The focused light is detected and collected by the photomultiplier tube (PMT), and the signal is sent to the computer, and the image is displayed on the computer monitor after processing.

Applications

Imaging and analysis in the fields of morphology, molecular cell biology, neuroscience, pharmacology, genetics

Procedure

1. Sampling
2. Preparation of slices
3. Staining (Select according to the specific experimental situation)
4. Observation

Materials

• Sample Type:
The hypothalamus of a macaque monkey

Notes

Operate in strict accordance with the operating procedures, and shall not arbitrarily change the operating procedures
In the starting sequence of the switch and in the scanning process, try to do fast and orderly, to protect the laser
Advertisement