Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!
Previous reports on the rat and monkey hypothalamus have revealed a dense noradrenergic innervation within the hypothalamic paraventricular nucleus as assessed by dopamine-beta-hydroxylase immunohistochemistry. These single-label analyses were unable to delineate the cellular structures which receive this catecholaminergic innervation. Double-label preparations in the rat hypothalamic paraventricular nucleus have demonstrated synaptic interactions between noradrenergic varicosities and magnocellular neurons. However, the density and distribution of varicosities contacting chemically identified magnocellular neurons have not been assessed at the light or electron microscopic level. In this service, single-label immunohistochemistry was used to assess the morphology and distribution of vasopressin- and oxytocin-immunoreactive neurons within the macaque hypothalamic paraventricular nucleus. In addition, double-label immunohistochemistry was combined with confocal laser scanning microscopy to quantify the number of dopamine-beta-hydroxylase-immunoreactive varicosities in apposition to magnocellular neurons expressing vasopressin or oxytocin immunoreactivity.