Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Real-time Measurement of protein structure (d-biotin interactions with streptavidin) by Dual polarization interferometry (DPI) (CAT#: STEM-MB-0379-WXH)

Introduction

The study of solution-phase interactions between small molecules and immobilized proteins is of intense interest, especially to the pharmaceutical industry. An optical sensing technique, dual polarization interferometry, has been employed for the detailed study of a model protein system, namely, d-biotin interactions with streptavidin immobilized on a solid surface. Changes in thickness and density of an immobilized streptavidin layer as a result of the binding of d-biotin have been directly measured in solution and in real time. The results obtained from this approach are in excellent agreement with X-ray crystallographic data for the structural changes expected in the streptavidin-d-biotin system. The mass changes measured on binding d-biotin also agree closely with anticipated binding capacity values. Determination of the density changes occurring in the protein adlayer provides a means for differentiation between specific and nonspecific interactions.




Principle

Dual polarization interferometry (DPI) is an analytical technique that allows the simultaneous determination of thickness, density, and mass of a biological layer on a sensing waveguide surface in real time. DPI focuses laser light into two waveguides. One of these functions as the "sensing" waveguide having an exposed surface while the second one functions to maintain a reference beam. A two-dimensional interference pattern is formed in the far field by combining the light passing through the two waveguides. The DPI technique rotates the polarization of the laser, to alternately excite two polarization modes of the waveguides. Measurement of the interferogram for both polarizations allows both the refractive index and the thickness of the adsorbed layer to be calculated. These measurements can be used to infer conformational information about the molecular interactions taking place, as the molecule size (from the layer thickness) and the fold density (from the RI) change.

Applications

Real-time Measurement of changes in protein structure.

Procedure

1. Setting of dual polarization interferometry
2. Preparing the DPI sensor chip
3. Immobilization of target on DPI biosensor
4. Reagent was injected to react
5. Quantitative analysis

Materials

• DPI biosensor
• DPI sensor chip
Advertisement