Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Study of ascorbyl radical and lipid radicals in marine organisms by Electron paramagnetic resonance (EPR) spectroscopy (CAT#: STEM-MB-1079-WXH)

Introduction

Electron paramagnetic resonance (EPR) spectroscopy detects the presence of radicals of biological interest, such as ascorbyl radical (K) and lipid radicals. A is easily detectable by EPR even in aqueous solution at room-temperature. Under oxidative conditions leading to changes in total ascorbate (AH(-)) content, the A'/AH(-) ratio could be used to estimate early oxidative stress in the hydrophilic milieu. This methodology was applied to a wide range of aquatic systems including algae, sea urchin, limpets, bivalves and fish, under physiological and oxidative stress conditions as well. The A'/AH(-) ratio reflected the state of one part of the oxidative defense system and provided an early and simple diagnosis of environmental stressing conditions.




Principle

Electron Paramagnetic Resonance (EPR), also called Electron Spin Resonance (ESR), is a branch of magnetic resonance spectroscopy which utilizes microwave radiation to probe species with unpaired electrons, such as radicals, radical cations, and triplets in the presence of an externally applied static magnetic field.
EPR spectroscopy is particularly suitable for the investigation of (bio)chemical systems with strongly localized spin density and their interaction with the environment. For these systems EPR provides information on the structure and dynamics and is widely used in chemistry, physics and biology.

Applications

• Study dynamic organisation of lipids in biological membranes, lipid-protein interactions and temperature of transition of gel to liquid crystalline phases.
• Determine oxygen levels in tissues and blood.
• Injection of spin-labeled molecules allows for electron resonance imaging of living organisms.
• EPR can be used to measure microviscosity and micropolarity within drug delivery systems as well as the characterization of colloidal drug carriers.
• The study of radiation-induced free radicals in biological substances (for cancer research).
• Investigation on the antioxidant properties of medicine

Procedure

1. Sample Preparation
2. Electron paramagnetic resonance (EPR) spectroscopy testing
43. Data analysis

Materials

• EPR Spectrometer
• Spectrophotometer
Advertisement