Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Study of phase segregation of Ti2AlC by Differential thermal analysis (DTA) (CAT#: STEM-ACT-0026-WXH)

Introduction

The ternary compound Ti2AlC ceramic belongs to the Mn+1AXn phase (where n is 1, 2 or 3, M is an early transition metal, A is an A-group element, and X is either C or N). This compound exhibits a surprising combination of good properties of ceramics and metals, including low density, high elastic modulus, easy machinability, and excellent thermal shock resistance and damage tolerance. Ti2AlC has a hexagonal crystal structure with space group of P63/mmc. The theoretical density of Ti2AlC is 4.11 g/cm3, which is lower than other ternary like Ti3SiC2, Ti2AlN and Ti2GeC. Due to these unique properties mentioned above, it is expected to apply in various fields, such as structural material for high temperature, substitute for machinable ceramics, kiln furniture, heat exchanger and so on.




Principle

Differential thermal analysis (DTA) is a thermoanalytic technique that is similar to differential scanning calorimetry. In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference. This differential temperature is then plotted against time, or against temperature (DTA curve, or thermogram). Changes in the sample, either exothermic or endothermic, can be detected relative to the inert reference. Thus, a DTA curve provides data on the transformations that have occurred, such as glass transitions, crystallization, melting and sublimation. The area under a DTA peak is the enthalpy change and is not affected by the heat capacity of the sample.

Applications

A DTA curve can be used only as a finger print for identification purposes but usually the applications of this method are the determination of phase diagrams, heat change measurements and decomposition in various atmospheres.
DTA is widely used in the pharmaceutical and food industries.
DTA may be used in cement chemistry, mineralogical research and in environmental studies.

Procedure

In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference.

Materials

Differential Thermal Analyzer / DTA Analyzer
Advertisement