Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Study of reaction kinetics and mechanisms by Stopped-flow method (CAT#: STEM-AC-0016-WXH)

Introduction

Chemical kinetics, also known as reaction kinetics, is the branch of physical chemistry that is concerned with understanding the rates of chemical reactions. It is different from chemical thermodynamics, which deals with the direction in which a reaction occurs but in itself tells nothing about its rate. Chemical kinetics includes investigations of how experimental conditions influence the speed of a chemical reaction and yield information about the reaction's mechanism and transition states, as well as the construction of mathematical models that also can describe the characteristics of a chemical reaction.




Principle

Stopped-flow is an experimental technique for studying chemical reactions with a half time of the order of 1 ms.
In its simplest form, a stopped-flow mixes two solutions. Small volumes of solutions are rapidly and continuously driven into a high-efficiency Ball mixer, so mixing is completed in just a few microseconds. This mixing process then initiates an extremely fast reaction.

Applications

Typically used to gain an understanding of reaction mechanisms, including drug-binding processes or following protein structural changes, stopped-flow spectroscopy enables the study of fast reactions in solution over timescales in the range of millisecond to hundreds of seconds.

Procedure

1. In stopped-flow experiments, two, three, or four sample solutions are rapidly mixed and injected into an observation cell.
2. When the flow is stopped, the kinetics are recorded with a detector best suited to the chemical properties of the solutions and the information of interest (e.g. particle size, the environment of the fluorophore, chromophore).

Materials

Stopped-Flows