In recent times there has been an enormous rise in resistance to synthetic antibiotics as well as an increase in the virulence of bacteria, the so-called "superbugs". This problem has catalyzed a search for novel molecules to fight bacteria, which in turn relies on a better understanding of the molecular basis of the immune response. Beta-defensins are a class of small, cationic, cysteine-rich antimicrobial peptides expressed by humans and other animals to act against incoming pathogens. As well as their antimicrobial properties, beta-defensins also act as chemokines, recruiting cells to the sites of infection. Here the relationship between the tertiary structures of beta-defensin analogs and their chemotactic activities has been investigated using ion mobility-mass spectrometry (IM-MS) and biochemical assays.