Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Morphological study of lipid vesicles for drug delivery by transmission electron microscopy technology (CAT#: STEM-MIT-0012-LJX)

Introduction

Lipid-containing nanostructures, in the form of solid lipid nanoparticles or iron oxide nanoparticles (NPs) coated with a lipid shell, were used as case studies for assessing and optimizing staining for transmission electron microscopy structural and compositional characterization. These systems are of paramount importance as drug delivery systems or as bio-compatible contrast agents.




Principle

Transmission electron microscopy (TEM) is to project the accelerated and concentrated electron beam onto a very thin sample, and the electron collides with the atoms in the sample and changes the direction, thus generating the stereo scattering Angle. The size of the scattering Angle is related to the density and thickness of the sample, so the image can be formed with different shades. The image can be enlarged, focused and displayed on imaging devices such as fluorescent screens, film and photosensitive coupling components. The resolution of transmission electron microscope is much higher than that of optical microscope, can reach 0.1~0.3nm, magnification of tens of thousands to millions of times. Therefore, transmission electron microscopy can be used to observe the fine structure of the sample.

Applications

Microscopic imaging in materials science or biology.

Procedure

1. Sampling
2. Preparation of slices
3. Staining (Select according to the specific experimental situation)
4. Observation

Materials

• Sample Type:
Lipid vesicles for drug delivery

Notes

Pay attention to air humidity
Voltage needs to be stabilized
Advertisement