Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Study of Internal Micromechanical Properties of Pseudomonas Aeruginosa Biofilms by Brillouin Scattering (CAT#: STEM-ST-0143-YJL)

Introduction

Biofilms are developed when extracellular polymeric substances (EPS) are secreted from adherent bacterial cells to form a matrix that encloses bacterial cells. They readily adhere to biological or non-biological surfaces, are highly dynamic and heterogeneous, yet have a distinct lifecycle. The EPS accounts for the largest part of the dry mass of biofilms (up to 90%)10 and is responsible for the formation and maintenance of biofilms and their three-dimensional architecture. The matrix is a cross-linked network of polymers and has presumably multiple roles in the life of biofilms. The EPS accounts for the largest part of the dry mass of biofilms (up to 90%)10 and is responsible for the formation and maintenance of biofilms and their three-dimensional architecture. The matrix is a cross-linked network of polymers and has presumably multiple roles in the life of biofilms. P. aeruginosa is an opportunistic bacterial pathogen commonly used as a model organism for biofilm formation.




Principle

From a quantum point of view, Brillouin scattering is an interaction of light photons with acoustic or vibrational quanta (phonons), with magnetic spin waves (magnons), or with other low frequency quasiparticles interacting with light. The interaction consists of an inelastic scattering process in which a phonon or magnon is either created (Stokes process) or annihilated (anti-Stokes process). The energy of the scattered light is slightly changed, that is decreased for a Stokes process and increased for an anti-Stokes process. This shift, known as the Brillouin shift, is equal to the energy of the interacting phonon and magnon and thus Brillouin scattering can be used to measure phonon and magnon energies.

Applications

Brillouin scattering is used to determine acoustic velocities and elastic properties of a number of crystalline solids, glasses, and liquids.

Procedure

1. Sample preparation
2. Measurement by scattering detection instrument
3. Data analysis

Materials

Brillouin scattering measurement system (Brillouin spectrometer)
Advertisement