Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Study of Purkinje cell by Patch clamp (CAT#: STEM-PET-0047-WXH)

Introduction

Purkinje cell, large neuron with many branching extensions that is found in the cortex of the cerebellum of the brain and that plays a fundamental role in controlling motor movement. These cells were first discovered in 1837 by Czech physiologist Jan Evangelista Purkinje. They are characterized by cell bodies that are flasklike in shape, by numerous branching dendrites, and by a single long axon. Most Purkinje cells release a neurotransmitter called GABA (gamma-aminobutyric acid), which exerts inhibitory actions on certain neurons and thereby reduces the transmission of nerve impulses. These inhibitory functions enable Purkinje cells to regulate and coordinate motor movements.




Principle

The patch-clamp technique involves a glass micropipette forming a tight gigaohm seal with the cell membrane. The micropipette contains a wire bathed in an electrolytic solution to conduct ions. To measure single ion channels, a “patch” of membrane is pulled away from the cell after forming a gigaohm seal.

Applications

• Study of ionic currents in individual isolated living cells, tissue sections, or patches of cell membrane.
• Study of excitable cells such as neurons, cardiomyocytes, muscle fibers, and pancreatic beta cells.
• Study of ion channels.

Procedure

1. Fabrication of glass electrodes
2. Measuring glass electrode resistance and compensating offset potential
3. Glass electrode contact to cell membrane and obtain a GΩ seal
4. Acquire and analyse recordings using the appropriate software.

Materials

Patch clamp system
Advertisement