Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Super-Resolution Imaging of Peroxisomal Proteins by Stimulated Emission Depletion Microscopy (CAT#: STEM-MIT-0367-LJX)

Introduction

Peroxisomes are crucial organelles that occur in almost all eukaryotes. Well known are their roles in various metabolic processes, such as hydrogen peroxide detoxification and lipid metabolism. Recent studies indicated that peroxisomes also have several non-metabolic functions, for instance, in stress response, signaling, and cellular ageing. In mammalian cells, the small size of peroxisomes (~200 nm, near the diffraction limit) hinders unveiling peroxisomal structures by conventional light microscopy. However, in the yeast Hansenula polymorpha, they can reach up to 1.5 μm in diameter, depending on the carbon source. To study the localization of peroxisomal proteins in cells in more detail, super-resolution imaging techniques such as stimulated emission depletion (STED) microscopy can be used. STED enables fast (live-cell) imaging well beyond the diffraction limit of light (30-40 nm in cells), without further data processing.




Principle

Stimulated emission depletion (STED) microscopy uses two light sources. One source emits light that excites the fluorophores, and the other emits a ring laser of different wavelengths, which is used to suppress fluorescence.

Applications

Imaging of the intensity distribution of the fluorescent sample
Imaging of living samples
Measuring of the fluorescence lifetime and fluorescence correlation spectrum of the fluorescent samples
Used in the fields of biology, medicine and materials science

Procedure

1. Sampling
2. Preparation of slices
3. Staining (Select according to the specific experimental situation)
4. Observation

Materials

• Sample Type:
Peroxisomal Proteins

Notes

Operate in strict accordance with the operating procedures, and shall not arbitrarily change the operating procedures
Advertisement