Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Analysis Kinetics of Vascular Endothelial Growth Factor A (VEGF-A) by BLI (CAT#: STEM-MB-0258-CJ)

Introduction

Vascular endothelial growth factor A (VEGF-A) is a protein that in humans is encoded by the VEGFA gene.Vascular endothelial growth factor A (VEGF-A) is a dimeric glycoprotein that plays a significant role in neurons and is considered to be the main, dominant inducer to the growth of blood vessels. VEGFA is essential for adults during organ remodeling and diseases that involve blood vessels, for example, in wound healing, tumor angiogenesis, diabetic retinopathy, and age-related macular degeneration. During early vertebrate development, vasculogenesis occurs which means that the endothelial condense into the blood vessels. The differentiation of endothelial cells is dependent upon the expression of VEGFA and if the expression is abolished then it can result in the death of the embryo. VEGFA is essential in the role of neurons because they too need vascular supply and abolishing the expression of VEGFA from neural progenitors will result in defects of the brain vascularization and neuronal apoptosis. VEGFA could be used to treat patients with neurodegenerative and neuropathic conditions and also increase vascular permeability which will stop the blood-brain barrier and increase inflammatory cell infiltration.




Principle

Bio-Layer Interferometry (BLI) is an optical technique for measuring macromolecular interactions by analyzing interference patterns of white light reflected from the surface of a biosensor tip. BLI experiments are used to determine the kinetics and affinity of molecular interactions. In a BLI experiment, one molecule is immobilized to a Dip and Read Biosensor and binding to a second molecule is measured. A change in the number of molecules bound to the end of the biosensor tip causes a shift in the interference pattern that is measured in real-time.

Applications

Neurobiology/Neurodegeneration; Immunology/Inflammation; Pharmacology

Procedure

1. Detect Buffers and prepare samples. BLI experiments are set up with one molecule immobilised on the surface of the biosensor (load sample) and a second molecule in solution (the analytical sample).
2. Fix the load sample on the biocompatible biosensor while the analytical sample is in solution.
3. The biosensor tip is immersed in the solution so that the target molecule begins to bind to the analysis sample.
4. Set up and run the BLI experiment. Molecules bound to or dissociated from the biosensor can generate response curves on the BLI system; unbound molecules, changes in the refractive index of the surrounding medium or changes in flow rate do not affect the interferogram pattern.
5. Collect and analyse data on the BLI's system.

Materials

• Equipment: ForteBio Bio-Layer Interferometry (BLI)
• Sample Type: DNA, RNA, Protein, Antibodies, Peptides, Small Molecules
• Optionals: MicroTissues 3D Petri Dish Micromolds
Advertisement