Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Study of the spatial variation of internal stress in synthetic diamond by Raman Spectroscopy (CAT#: STEM-ST-0055-WXH)

Introduction

Lab-grown diamond is diamond that is produced in a controlled technological process (in contrast to naturally formed diamond, which is created through geological processes and obtained by mining). Unlike diamond simulants (imitations of diamond made of superficially similar non-diamond materials), synthetic diamonds are composed of the same material as naturally formed diamonds – pure carbon crystallized in an isotropic 3D form – and share identical chemical and physical properties.




Principle

Raman Spectroscopy is a non-destructive chemical analysis technique which provides detailed information about chemical structure, phase and polymorphy, crystallinity and molecular interactions.
The principle behind Raman spectroscopy is that the monochromatic radiation is passed through the sample such that the radiation may get reflected, absorbed, or scattered. The scattered photons have a different frequency from the incident photon as the vibration and rotational property vary.

Applications

• Analysis of biocompatibility of a material.
• Analysis of nucleic acids.
• Study of interactions between drugs and cells.
• Photodynamic therapy (PDT).
• Analyzing metabolic accumulations of a substance or compounds.
• Diagnosis of disease.
• Analysis of individual cells.
• Cell sorting applications.
• Analyzing the features of biomolecules.
• Study of bone structure.

Procedure

1. Preparation of samples
2. Determine instrument parameters
3. Perform background scan
4. Test the sample
5. Data analysis

Materials

• Raman Spectrometer
• Raman Imaging Microscope
Advertisement