Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Conformational analysis of Concanavalin A by Circular dichroism (CD) (CAT#: STEM-MB-0646-WXH)

Introduction

Concanavalin A (ConA) is a lectin (carbohydrate-binding protein) originally extracted from the jack-bean (Canavalia ensiformis). It is a member of the legume lectin family. It binds specifically to certain structures found in various sugars, glycoproteins, and glycolipids, mainly internal and nonreducing terminal α-D-mannosyl and α-D-glucosyl groups. Its physiological function in plants, however, is still unknown. ConA is a plant mitogen, and is known for its ability to stimulate mouse T-cell subsets giving rise to four functionally distinct T cell populations, including precursors to regulatory T cells; a subset of human suppressor T-cells is also sensitive to ConA. ConA was the first lectin to be available on a commercial basis, and is widely used in biology and biochemistry to characterize glycoproteins and other sugar-containing entities on the surface of various cells. It is also used to purify glycosylated macromolecules in lectin affinity chromatography, as well as to study immune regulation by various immune cells.




Principle

Circular dichroism (CD) is a spectroscopy technique that measures the absorption difference between left and right circularly polarized light. By symmetry, this asymmetric absorption can only occur for asymmetric molecules, meaning chiral molecules.

Applications

Circular dichroism (CD) spectroscopy is a powerful technique that is sensitive to the chirality (handedness) of molecules. It can be used to study absolute stereochemistry, enantiomeric composition, racemization, enantiomeric differentiation, and molecular interactions and conformation.

Procedure

1. Sample preparation
2. Measurement by CD instrument
3. Data analysis

Materials

Circular dichroism (CD) spectrophotometer
Advertisement